Fluid shear stress attenuates tumor necrosis factor-alpha-induced tissue factor expression in cultured human endothelial cells.
نویسندگان
چکیده
Hemodynamic forces modulate various endothelial cell functions under gene regulation. Previously, we have shown that fibrinolytic activity of endothelial cells is enhanced by the synergistic effects of shear stress and cytokines. In this study, we investigated the effect of shear stress on tumor necrosis factor (TNF)-alpha-induced tissue factor (TF) expression in cultured human umbilical vein endothelial cells (HUVECs), using a modified cone-plate viscometer. Shear stresses at physiological levels reduced TNF-alpha (100 U/mL)-induced TF expression at both mRNA and antigen levels, in a shear-intensity and exposure-time dependent manner, whereas shear stress itself did not induce TF expression in HUVECs. TF expressed on the cell surfaces measured by flow cytometry using an anti-TF monoclonal antibody (HTF-K180) was also decreased to one third by shear force applied at 18 dynes/cm2 for 15 hours before and 6 hours after TNF-alpha stimulation. Furthermore, functional activity of TF, as assessed by the activation of factor X in the presence of FVIIa and Ca2+, was also decreased by shear application. However, the stability of TF mRNA was not decreased in the presence of shear stress. These results suggest that shear force acts as an important regulator of TF expression in endothelium at the transcriptional level.
منابع مشابه
Fluid Shear Stress Attenuates Tumor Necrosis Factor-a–Induced Tissue Factor Expression in Cultured Human Endothelial Cells
Hemodynamic forces modulate various endothelial cell functions under gene regulation. Previously, we have shown that fibrinolytic activity of endothelial cells is enhanced by the synergistic effects of shear stress and cytokines. In this study, we investigated the effect of shear stress on tumor necrosis factor (TNF)-a–induced tissue factor (TF) expression in cultured human umbilical vein endot...
متن کاملThe Effect of Aerobic Training on Tumor Necrosis Factor alpha, Hypoxia-Inducible Factor-1 alpha & Vascular Endothelial Growth Factor Gene Expression in Cardiac Tissue of Diabetic Rats
Objective: The goal of this research was to determine the influence of 4 weeks aerobic training on gene expression of tumor necrosis factor alpha (TNF-α), hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) in the cardiac tissue of diabetic rats. Materials and Methods: In an experimental study, 30 male wistar rats were partitioned into three groups (n=10), d...
متن کاملShear stress-induced activation of the AMP-activated protein kinase regulates FoxO1a and angiopoietin-2 in endothelial cells.
AIMS Phosphorylation of forkhead box O (FoxO) transcription factors induces their nuclear exclusion and proteosomal degradation. Here, we investigated the effect of fluid shear stress on FoxO1a in primary cultures of human endothelial cells and the kinases that regulate its phosphorylation. METHODS AND RESULTS Shear stress (12 dynes/cm2) elicited the phosphorylation, nuclear exclusion, and de...
متن کاملHEMOSTASIS, THROMBOSIS, AND VASCULAR BIOLOGY Exposure to fluid shear stress modulates the ability of endothelial cells to recruit neutrophils in response to tumor necrosis factor- : a basis for local variations in vascular sensitivity to inflammation
Vascular endothelial cells are able to sense changes in the forces acting on them and respond, for instance, by modifying expression of a range of genes. However, there is little information on how such responses are integrated to modify homeostatic functions. We hypothesized that different shear stresses experienced in different regions of the circulation might influence endothelial sensitivit...
متن کاملEffect of Purification of Human Adipose-derived Mesenchymal Stem Cells on the Expression of vWF Cell Factor Under Chemical and Mechanical Conditions
Introduction: Human adipose-derived mesenchymal stem cells (hADSCs) are easily accessible in the body, and under appropriate conditions, they can be directed toward various phenotypes. Therefore, hADSCs have been considered as a potential cell source for tissue engineering applications. hADSCs are able to differentiate into endothelial cells which covers the interior surface of vessels, in vi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 91 11 شماره
صفحات -
تاریخ انتشار 1998